入门:NLP自然语言处理

2024年7月19日修改
什么是 NLP?
自然语言处理 (NLP) 是一种机器学习技术,使计算机能够解读、处理和理解人类语言。如今,组织具有来自各种通信渠道(例如电子邮件、短信、社交媒体新闻源、视频、音频)的大量语音和文本数据。他们使用 NLP 软件自动处理这些数据,分析消息中的意图或情绪,并实时响应人际沟通。
为什么 NLP 非常重要?
自然语言处理(NLP)对于全面高效分析文本和语音数据至关重要。其可以处理日常对话中的方言、俚语和典型语法异常方面的差异。
公司将其用于一些自动化任务,例如:
处理、分析和存档大型文档
分析客户反馈或呼叫中心录音
运行聊天机器人实现自动化客户服务
回答“人员-事件-时间-地点”问题
分类和提取文本
您还可以在面向客户的应用程序中集成 NLP,从而更有效地与客户沟通。例如,聊天机器人会分析和排序客户查询的问题,自动回复常见问题,并将复杂的查询转至客户支持。这种自动化流程有助于降低成本,节省座席在冗余查询上花费的时间,并提高客户满意度。
有哪些适用于企业的 NLP 使用案例?
企业使用自然语言处理(NLP)软件和工具高效和准确地简化、自动化和梳理运营。我们在下面给出一些使用案例示例。
敏感数据消减
保险、法律和医疗保健领域的企业对大量敏感文档(如病历、金融数据和私人数据)进行处理、排序和检索。公司使用 NLP 技术删节个人身份信息并保护敏感数据,而非通过手动审核。例如,Chisel AI 通过 Amazon Comprehend 帮助保险公司从非结构化文档中提取保单编号、到期日期和其他个人客户属性。
客户参与
NLP 技术使聊天机器人和语音机器人在与客户交谈时更像人类。企业使用聊天机器人扩展客户服务功能和质量,同时将运营成本降至最低。 PubNub 构建聊天机器人软件,使用 Amazon Comprehend 向其全球客户推出本地化聊天功能。 T-Mobile 使用 NLP 识别客户短信中的特定关键字并提供个性化推荐。 俄克拉荷马州立大学使用机器学习技术部署问答聊天机器人解决方案,解决学生问题。
业务分析
营销人员使用 Amazon Comprehend 和 Amazon Lex 等 NLP 工具了解客户对公司产品或服务的感受。通过扫描特定的短语,他们可以衡量客户书面反馈中的情绪和情感。例如,Success KPI 提供自然语言处理解决方案,帮助企业专注于情绪分析中的目标领域,同时帮助联系中心从呼叫分析中获得切实可行的见解。
NLP 如何工作?
自然语言处理(NLP)结合计算语言学、机器学习和深度学习模型处理人类语言。
计算语言学
计算语言学是使用计算机和软件工具理解和构建人类语言模型的科学。研究人员使用计算语言学方法(例如语法和语义分析)创建框架,从而帮助机器理解对话式人类语言。语言翻译器、文字转语音合成器和语音识别软件等工具都基于计算语言学。
机器学习
机器学习是一种技术,使用样本数据训练计算机以提高其效率。人类语言有一些特征,例如讽刺、隐喻、句子结构变化,以及人类需要数年才能学习的语法和特殊用法。程序员使用机器学习方法教授 NLP 应用程序从一开始就识别和准确理解这些特征。
深度学习
深度学习是机器学习的一个特定领域,教授计算机像人类一样学习和思考。此领域涉及神经网络,该网络由结构类似人脑的数据处理节点组成。计算机借助深度学习可以识别、分类和关联输入数据中的复杂模式。
NLP 实施步骤