Character.AI 同时也是目前个性化 AI 聊天机器人赛道技术能力最强的团队:创始人 Noam Shazeer 是 Google 的前 200 号员工,在 Google 工作的 17 年中,他参与了 Google 的一系列 AI 项目和研究,是 Attention is All You Need 的核心作者以及 Google LaMDA 项目的核心成员。Noman 的联合创始人 Daniel de Freitas 则参与领导了 Meena 和 LaMDA 的开发。Character.AI 是这两位 LLM OG 技术主张的产品实践。
在商业化上,Noam 提到 Character.AI 的 to C 产品接下来会推出增值功能订阅,当时机成熟后,Character.AI 的模型的能力还可以向 to B 场景输出,成为特定行业、公司业务的 Chatbot 解决方案。
以下为本文目录,建议结合要点进行针对性阅读。
👇
01 技术主张:幻觉不是问题,提高模型记忆能力是更高优先级
02 Character.AI:并非取代 Google,而是大模型的“民主化”
03 超级智能:AGI 是一个自然而然的结果
01.
技术主张:幻觉不是问题,提高模型记忆能力是更高优先级
Q:在 Google 17 年的工作经历是如何影响你参与 AI 实践的?
我参与 AI 是一个自然而然的过程。在思考怎么用计算机做一些更有趣的项目时,AI 是 Top 1 的选择。也因为这个原因,我在 2000 年底进入到 Google,并在 Google 工作了 17 年。在加入时,我参与了那个时期 Google 在 AI 领域的一系列尝试,包括第一版的查询拼写校正工具、无监督主题聚类的系统(后来变成了 AdSense 的第一个定位功能)、以及其他 ML 领域的项目。
当二三十年前我最初接触人工智能的时候,几乎每个人都在研究贝叶斯网络和概率论。我之所以选择人工智能也是因为很喜欢概率论。在杜克大学读研究生的时候,教授 Mike Litman 让全班同学一起合作,建立一个能解决填字游戏的系统。其中一位同学 Greg Keim(目前在 Character.AI 担任 Research Engineer)收集了大量的填字游戏,并形成了一个数据库,我们用它作为线索数据库的起点,并发明算法来填充空白网格。
其实很多今天认为理所当然的事情都是当时打下的基础,例如在当时,Paul Graham 就已经发明了著名的垃圾邮件解决方案,产品形态是一个 Outlook 插件,帮助用户用贝叶斯推断的逻辑过滤掉垃圾邮件。