输入“/”快速插入内容

Nature子刊,快10倍,基于Transformer的逆向蛋白质序列设计方法

2024年8月12日修改
机器之心 ScienceAI|阅读原文
转载请联系原作者取得授权
编辑 | 萝卜皮
借助 深度学习 的进步,蛋白质设计和工程正以前所未有的速度发展。然而,目前的模型无法在设计过程中自然地考虑非蛋白质实体。
在这里,瑞士洛桑联邦理工学院(EPFL)的研究人员提出了一种完全基于原子坐标和元素名称的几何 transformer 的 深度学习 方法,该方法可以根据不同分子环境所施加限制的主链支架,预测蛋白质序列。
使用该方法,研究人员可以以高成功率生产出高热稳定性、催化活性的酶。这有望提高蛋白质设计流程的多功能性,以实现所需的功能。
该研究以「 Context-aware geometric deep learning for protein sequence design 」为题,于 2024 年 7 月 25 日发布在《 Nature Communications 》。
设计蛋白质以实现功能性任务是一个具有重大生物学、医学、生物技术和材料科学影响的挑战。一个关键应用领域是蛋白质治疗药物的设计,通过定制蛋白质来精确针对特定疾病,可能比小分子药物更具竞争力。这种方法可能革新许多健康问题的治疗方式,从自身免疫疾病到癌症,提供更有效和个性化的治疗方案。
此外,设计酶功能也是蛋白质设计中的另一个重要挑战。酶作为天然催化剂在生物过程中起关键作用。通过设计新酶或改造现有酶,可以创造出促进自然界中罕见或不存在反应的催化剂。这对多个行业有深远影响,包括制药业和环保技术,例如合成复杂药物分子或分解污染物和塑料。
深度学习 方法显著加速了蛋白质设计的成功率和多样性。然而,虽然目前的蛋白质设计模型可以处理多条蛋白质链,但在处理非蛋白质实体时表现较差,限制了其应用范围。
为解决这一问题,EPFL 的研究团队曾经引入了一种 深度学习 模型——Protein Structure Transformer(PeSTo),一种几何 transformer 架构,作用于原子点云。
PeSTo 结合了 transformer 注意力机制 ,利用标量和矢量状态表示原子,可以预测几乎任何分子与蛋白质界面的相互作用,包括蛋白质、核酸、脂类、离子、小配体、辅因子或碳水化合物。
在最新的工作中,该团队利用该模型的独特功能,并引入了基于 PeSTo 的蛋白质序列生成器模型 CARBonAra(Context-aware Amino acid Recovery from Backbone Atoms and heteroatoms)。
CARBonAra 基于 PDB 中可用的结构数据进行独特训练,可预测给定主链支架所有位置的氨基酸置信度,这些主链支架可以单独提供,也可以与任何种类和数量的有助于推动序列设计的分子复合。
图示:CARBonAra的架构以及与 SOTA 方法的比较。(来源:论文)