Covariant:OpenAI Mafia创业,为机器人开发AI大脑

作者:Kefei、Haozhen 拾象
附件不支持打印
飞书文档 - 图片
随着过去几年电商渗透率快速提升,仓储、物流场景对效率、自动化的需求不断增强。Pick and Place 是仓储和物流系统中非常重要的一环,将其进行自动化是提升物流效率的核心,我们看到越来越多的 Pick and Place Robot 被部署在仓储和物流场景中。
Deep Learning 应用于 Pick and Place Robot 也是行业关键变量之一。在应用 Deep Learning 以前,Pick and Place Robot 通过获取特定物品的 3D 模型进行拣选,该方法的局限性在于机器人很难拾取此前没有建模和编码的新物品,且在部署到实际场景时,需要针对特定物品手动调整算法,过程非常复杂且低效。因此,基于传统方法,Pick and Place Robot 只能在结构化的场景中进行,无法 scale 到复杂场景。加入 Deep Learning 算法后,机器人不需要针对特定对象进行建模,而是通过大规模数据的训练,机器人可以从自身经验中学习,完成更新、更广泛的任务。