输入“/”快速插入内容

MiniCPM 3.0 推理

2024年9月29日修改
👇
面向人员:能使用基本的bash,python,能够使用python处理数据即可
机器要求:最少8G以上内存的机器,其余显存随上下文长度上升
点击目录直接跳转👇
Transformers
chat方法
代码块
from transformers import AutoTokenizer,AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("/root/ld/ld_model_pretrained/minicpm3")
model=AutoModelForCausalLM.from_pretrained("/root/ld/ld_model_pretrained/minicpm3",trust_remote_code=True).cuda()
history=[]
query=input("user:")
response,history=model.chat(tokenizer, query=query,history=history)
print("model:",response)
query=input("user:")
response,history=model.chat(tokenizer, query=query,history=history)
print("model:",response)
#history是列表形式[{"role": "assistant", "content": answer1},{"role": "assistant", "content": response}。。。。]
Generate 方法
1.
继续生成类(非问答)方法
代码块
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("/root/ld/ld_model_pretrained/minicpm3",trust_remote_code=True).cuda()
tokenizer = AutoTokenizer.from_pretrained("/root/ld/ld_model_pretrained/minicpm3",trust_remote_code=True)
prompt = "Hey, are you conscious? Can you tell me "
inputs = tokenizer(prompt, return_tensors="pt")
# Generate
generate_ids = model.generate(inputs.input_ids.cuda(), max_length=300,do_sample=False)
output=tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(output)
2.
对话类(问答)方法
代码块
from transformers import AutoTokenizer,AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("/root/ld/ld_model_pretrained/minicpm3")
model=AutoModelForCausalLM.from_pretrained("/root/ld/ld_model_pretrained/minicpm3",trust_remote_code=True).cuda()
query="你吃了饭没"
message=[{"role":"user","content":query}]
model_inputs = tokenizer.apply_chat_template(message, return_tensors="pt", add_generation_prompt=True).to(model.device)
generate_ids = model.generate(model_inputs, max_length=300,do_sample=False)
output=tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]
print(output)
Function call 简易实现(更细致、更高效请看💥【再聊agent】Function call 详解