加载失败,

清华太极-Ⅱ 光芯片登上 Nature,首创架构突破智能光计算训练难题

2024年8月13日修改
学术头条|阅读原文
转载请联系原作者取得授权
附件不支持打印

加载失败,

撰文 | 马雪薇
前言
未来的人工智能(AI)模型,或许可以用“光”来训练了。
长期以来,传统的电子计算推动着 AI 模型规模的不断扩展,但大规模意味着高算力,也意味着高能耗,因此,亟需一种高效低能耗的计算方法来解决未来 AI 模型所面临的能源问题。
近年间,具有高算力低功耗特性的智能光计算逐步登上了算力发展的舞台。通用智能光计算芯片“太极”的问世便是其中的一个缩影,它首次将光计算从原理验证推向了大规模实验应用,以 160TOPS/W 的系统级能效为大规模复杂任务的“推理”带来了曙光,但未能够释放智能光计算的“训练之能”。
训练和推理是 AI 大模型核心能力的两大基石,缺一不可。相较于模型推理而言,模型训练更需要大规模算力。
然而,现有的光神经网络训练严重依赖电计算进行离线建模并且要求物理系统精准对齐。正因如此,光学训练的规模受到了极大的限制。