输入“/”快速插入内容

Nature子刊,上智院、复旦、中国气象局研发次季节AI大模型「伏羲」,突破「可预报性沙漠」

2024年8月19日修改
机器之心 ScienceAI|阅读原文
转载请联系原作者取得授权
编辑 | ScienceAI
作者 | 伏羲团队
国务院印发的《气象高质量发展纲要(2022—2035 年)》明确提出要「提前一个月预报重大天气过程」,而这离不开 15 天以上的次季节气候预测技术。
次季节气候预测关注的是未来 15~60 天的气候异常,可以为农业、水利、能源等领域的生产安排提供重要支撑。
相比时效在两周以内的中短期天气预报,次季节气候预测的不确定性更大。它不仅需要考虑初值问题,还要考虑边界强迫的影响,预测来源更为复杂,预测技巧也较少。因此,次季节气候预测一直被称为「可预报性沙漠」,
由于其复杂性,甚至连 AI 大模型在时间尺度上的表现亦长期未能超越传统模型。
为了解决这个问题,上海科学智能研究院(简称上智院)、复旦大学、中国气象局国家气候中心联合研发了「伏羲」次季节气候预测大模型(FuXi-S2S) ,首次超越传统数值预报模式的标杆 —— 欧洲中期天气预报中心(ECMWF)的 S2S 模式。
近日,该成果以「 A Machine Learning Model that Outperforms Conventional Global Subseasonal Forecast Models 」为题的论文,被国际权威综合性期刊《 Nature Communications 》杂志收录发表。
作为一种机器学习模型,「伏羲」次季节气候预测大模型包含较为全面的变量:13 个气压层的 5 个高空大气变量和 11 个地面变量。其独特之处在于能够快速有效地生成大型集合预测,在大约 7 秒内完成长达 42 天的全球日平均预报。
这些预测信息对于农业规划、资源管理、灾害准备,以及抵御热浪干旱、寒潮洪水等极端天气事件至关重要。
「伏羲」次季节气候预测大模型在技术上实现了两个关键性创新:
一是引入了海气相互作用过程,特别是将热带大气季节内振荡(MJO)这个次季节最重要的可预报性来源纳入模型;
二是在隐空间中创新性设计了智能扰动生成模块,从而可以在当前气候系统状态下刻画未来一个预报时次气候系统演变的概率特征,进而有效抓住气候系统的物理不确定性。
这些技术突破使得该模型对降水的全球预测能力显著提升,尤其在我国长江中下游地区等热带外地区更为显著。
图示:流程架构概述。(来源:论文)